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J. Phys. A Moth. Gen. 27 (1994) 5145-5160. Printed in the U K  

On Fokker-Planck approximations of on-line learning 
processes 
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Beckman Institute and Department of Physics. University of Illinois at Urbana-Champaign, 
405 North Mathews Avenue, Urbana, IL 61801, USA 

Received 15 December 1993, in final form 24 May 1994 

Abstract There axe several ways to describe on-line learning in neural networks. The two 
major ones are a continuous-time master equation and a discretetime random-walk equation. 
The random-walk equation is obtained in the case of fixed time intenids between subsequent 
learning steps, the master equation results when the time intervals are drawn from B Poisson 
distn'bution. Following Van Kampen, we give a rigorous expansion of both the master and 
the random-walk equation in the limit of small learning parameters. The results explain the 
difference between the Fokke-Planck approaches proposed by Radons et a1 and Hansen et 
al. Furthermore, we find that the mathematical validity of these approaches is restricted lo 
lo& properties of the leming process. Yet Fokker-Pianck approaches are often suggested as 
models to study global properties, such as mean first passage times and stationary solutions. 
To check their accuracy and usefulness in these situations we compare simulations of two 
learning procedures with exactly the same drift vector and diffusion matrix, the only momem 
that are considered in Fokker-Planck approximation. The simulations show that the mean first 
passage times for these two learning procedures diverge rather than converge for small learning 
parameters. We reach the conclusion that Fokker-Planck approaches are not accurate enough to 
compute global properties of on-line learning processes. 

1. Introduction 

1.1. Outline 

On-line learning stands for learning in artificial neural networks where at each learning 
step one of the patterns is drawn at random from the total set of training patterns and is 
presented to the network. This is in constrast with batch-mode learning where the learning 
rule involves first an average over the whole training set and is only then applied. Batch- 
mode learning is deterministic, whereas on-line learning, through the random presentation 
of patterns, is stochastic. This stochasticity can be very helpful, e.g. to speed up learning or 
to escape from local minima from the error potential on which the (average) learning rule 
performs a gradient descent. 

In section 1.2 we give a few descriptions of on-line learning processes. A discrete-time 
random-walk equation is obtained if the time intervals between subsequent learning steps 
are taken as constant, a continuous-time master equation if these time intervals are Poisson 
distributed. Neither the master nor the random-walk equation can be solved in general. 

Many researchers therefore propose describing on-line learning processes by an 
approximate Fokker-Planck equation 12-91, In sections 2.1 and 2.2, we will review the 
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approaches suggested by Rndons et al [2, 91 and Hansen et al [3], respectively. These two 
approaches differ by the form of the diffusion term. The lack of a firm (common) theoretical 
basis makes it difficult to judge the validity of these two approachcs and to explain their 
difference. Van Kampen’s approximation [ I ] ,  however, is known to be a proper ‘small- 
fluctuations’ expansion, valid for small learning parameters q. In section 2.3 we will 
rederive Van Kampen’s expansion of a continuous-time master equation. Its derivation 
for the discrete-time random walk, treated in section 2.4, is somewhat more complicated. 
The results from these sections not only explain the difference between the Fokker-Planck 
approaches of Radons and Hansen, but also indicate that the Fokker-Planck approaches are 
only locally valid, i.e. on relatively short time scales or in a local neighbourhood of minima 
of the error potential. Strictly speaking, global properties of on-line learning processes, such 
as mean first passage times and stationary solutions, are outside this validity regime. 

Nevertheless, if viewed as models instead of as proper expansions, Fokker-Planck 
approaches might still be useful for describing global properties of on-line learning. Several 
suggestions in this direction have been made in the literature [Z, 5-81, In section 3, we 
will discuss the accuracy of Fokker-Planck approxhes in predicting mean first passage 
times. For the one-dimensional toy problem of section 3.2, the Fokker-Planck approaches 
yield closed expressions for mean first passage times that can be integrated numerically and 
compared with Monte Carlo simulations of the on-line learning process. In sections 3.3 
and 3.4, we describe Monte Carlo simulations of the Kohonen learning rule and on-line 
backpropagation. In both cases, we compare the mean first passage times for the on-line 
learning process with those for the corresponding ‘Laogevin-type’ learning process. The 
Langevin-type learning rule is defined as the batch-mode learning rule with additive noise 
such that the first two moments (drift and diffusion) are completely equivalent to the first two 
moments of the on-line learning rule. Since Fokker-Planck approaches are based solely on 
thes two moments of the transition matrix, the predict the same results for on-line learning 
and Langevin-type learning. Is this correct? 

1.2. Definitions and background 

At each learning step, a training pattern x is drawn at random from the total training set and 
presented to the network. The vector x denotes the combination of input vector and desired 
output vector for supervised learning or just the input vector for unsupervised learning. The 
weight change at iteration step i is given by 

(1) 
with w, the weight vector at iteration step i ,  which includes the strengths of all synapses 
and thresholds, q the learning parameter, and f(. , .) the particular learning rule. In the 
following we will use a one-dimensional notation for simplicity. The description ( I )  is 
valid for a large class of learning rules in neural network literature. Well known examples 
are the (unsupervised) Kohonen learning rule [IO] and the (supervised) backpropagation 
learning rule [ l  11 (see sections 3.3 and 3.4). 

On-line learning described by (1) is a Markov process. The probability pi(w) for the 
system to be in state w after i learning iterations obeys the random-walk equation [12, 2, 131 

Awj = wi+l - Wj = q f ( w j .  x )  

P ~ + I ( w )  = dw’T(wlw’) Pi(w‘) (2 )  s 
with transition probability T(wlw’) to go from an old state w‘ to a new one w given by 
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with p ( x )  the probability density function of training patterns. We will denote an average 
with respect to p ( x )  by (.),. The average can be over a continuous distribution (as in 
section 3.3) as well as over a finite training set (as in section 3.4). 

We still have the freedom to choose the points of time ti of the iteration steps i .  We 
write 

ti+, e ti + A t  

There are two popular ways to choose the time intervals A t .  The most obvious choice is 
constant time intervals, i.e. time intervals chosen from the ‘distribution’ 

e ( A t )  = 6 ( A t  - r ) .  

Then the probability P ( w ,  t )  to be in state w at time t follows: 

P (w, t + T )  - P ( w ,  t )  = dw‘ [T(wlw‘) P(w‘, t )  - T(w‘lw) P ( w ,  t)] (4) s 
which is just the random-walk equation (2) in a different notation. For Poisson-distributed 
time intervals, i.e. 

e ( A t )  = z exp [ +] 
the random-walk equation (2) transforms into the continuous-time master equation [14, 41 s (5 )  

a 
at 

r - P ( w .  t )  = dw’ [T(wlw‘) P(w‘, t )  - T(w’lw) P ( w ,  t ) l .  

This transformation is exact for ail times t and learning parameters q. It can be shown that at 
long times t the solutions P ( w ,  r) of the discrete-time random walk (4) and the continuous- 
time master equation (5 )  approach each other [14, 91. The Kramers-Moyal expansion 

with the moments a,(w) defined by 

= (f”(w3x)), 
is just another way to write down the master equation (5) or the random-walk equa- 
tion (4) [l]. In general, neither the random-walk equation (4) nor the master equation (5) 
can be solved analytically. A way to proceed is to look for approximations valid for small 
learning parameters q. 

2. Fokker-Planck approximations for on-line learning 

2.1. Radons’ Fokker-Planck equation 

Radons et a1 [Z, 91 (see also [7, 81) truncate the Kramers-Moyal expansion (6) after two 
terms to obtain the Fokker-Planck equation 

(7) 

Even though the Kramers-Moyal expansion does indeed look like an expansion in the 
learning parameter q ,  one has to be very careful with a truncation after any number of 
terms since the probability distribution P(w, t) itself is also a function of q.  This can be 

a a q? a2 
~ , t Q ( w + t )  = - - 7 7 - [ a l ( ~ ) Q ( w , t ) l +  - - - [a? (w)Q(w, t ) l .  aw z aw? 
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seen most easily by substitution of the stationary solution of the (one-dimensional) Fokker- 
Planck equation 

into the Kramers-Moyal expansion (6). The first two terms in this expansion exactly cancel 
each other (of course), but all higher-order terms are of the same order of magnitude in 7 
as the first two terms. We are by no means allowed to claim that the stationary solution (8) 
is some consistent approximation of the true stationary solution of the master equation (5). 
In 115, 161, conditions on the transition matrix T(w1w') are stated that justify a full use 
of the Fokker-Planck approximation (7) (see also section 2.3). These conditions do not 
hold for the transition probability (3). For a further explanation we refer to the standard 
textbooks [15, 161 or the book chapter [13]. 

2.2. Hansen's Fokker-Planck equation 

Hansen er al [3]  arrive at a slightly different Fokker-Planck equation through a quite 
different route. They average the dynamics of the weights (1) over a large number 
1 << n < l / v  of learning steps. Neglecting higher-order terms and assuming independence 
between subsequent weight changes, they obtain 

(9) w(t + n r )  - w(t) = q n a t ( w )  + rl &ZGt 
with the Gaussian white noise (zero average, unit standard deviation) and 

Equation (9) is called a 'Langevin-type' equation. It can be viewed as a discretized 
version of the continuous-time Langevin equation [l] .  Now Hansen et a[ state that this 
Langevin-type equation is (in the limit n -+ 0) completely equivalent to the Fokker-Planck 
equation (7) but with &(U) instead of a.(w). They suggest 

Also in this case one must be careful, since the relationship between this Fokker-Planck 
equation and the Langevin-type equation (9) for n >> 1 is not clear. Let us try to formalize 
the step from the Langevin-type equation (9) to the Fokker-Planck equation (10). First we 
rewrite (9) as 

w(r + rn'q-') - w(t) = n' q-' at (w) + (11) 

with n' n$. We can, by letting q + 0, take the limit n' -+ 0 on the right-hand side. Then 
we reach the conclusion that the stationary solution of Hansen's Fokker-Planck equation 
correctly describes the stationary solution of the Langevin-type learning process (9) in the 
limit of small learning parameters 7. Note, however, that because of the assumptions made 
in deriving (9), this does not necessarily mean that this stationary solution is the stationary 
solution of the master equation (5) (see also section 3). 

If we also take the limit r -+ 0 on the left-hand side of ( I  I ) ,  we can indeed arrive at the 
Fokker-Planck equation (IO). However, since r is nothing but our definition of time scale 
(we might have called it 1 from the beginning) this is not a well defined limit. In section 2.4 
we will give a systematic derivation of a (continuous-time) Fokker-Planck approximation 
of the random-walk equation (4) for small learning parameters 11. 
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2.3. Van Kampen’s expansion of the master equation 

Intuitively, a realization of a stochastic process can often be viewed as an average, 
deterministic trajectory, with stochastic fluctuations around this trajectory. This is the so- 
called ‘small-fluctuations ansatz’ 

= @ ( t )  + f i F .  (12) 
It says that the time-dependent stochastic variable w is given by a deterministic part @ ( t )  
(to be determined) plus a term of order Jii containing the (small) fluctuations. Using Van 
Kampen’s expansion [ l ]  (see also [16, 13]), it is possible to obtain the precise conditions 
under which this intuitive picture is valid. A quick review of the expansion can be found 
in the appendix. 

The final result of Van Kampen’s expansion is a (nonlinear) differential equation for the 
deterministic part 

and a linear Fokker-Planck equation for the probability ilg, t )  of the fluctuations t 

This so-called linear noise approximation is only valid as long as the small-fluctuations 
ansatz (12) is justified. In the appendix it is shown that this restricts its validity to regions 
of weight space with a,(” < 0. In regions of weight space with a!’’ 2 0 it is only 
valid on time scales < O(l/q) [assuming that we start with a localized distribution, e.g. 

Generalization of these results to N dimensions, i.e. N adaptive elements, is 
straightforward. The first moment becomes an N-dimensional drift vector, its derivative an 
N x N-matrix H(w)  with components 

P(W, 0) = S(w - @(O))l. 

This ‘Hessian matrix’ H(w)  (it is a true Hessian matrix if and only if the drift vector can 
be written as the gradient of some error potential or energy function, see e.g. [5]) must be 
positive definite for Van Kampen’s expansion to be valid. Each of these so-called attraction 
regions defined by positive definite Hessian H ( w )  contains one fixed-point solution of the 
deterministic equation (13), i.e. a solution @* with 

a] (6’) = 0 and positive definite H ( v ) ,  
Thus, the small-fluctuations ansatz (12) is valid inside the attraction regions, i.e. in the 
vicinity of the fixed-point solutions, but (on time scales > O(l/q)) not outside of these 
attraction regions. 

Now that we have made a rigorous expansion of the master equation, we can check the 
validity of Radons’ Fokker-Planck approximation (7). If we substitute the small-fluctuations 
ansatz (12) into the Fokker-Planck equation (7). then the lowest-order Fokker-Planck 
equation f o r t  is exactly the same as the lowest-order term (14) in the linear noise expansion. 
In other words, terms 0($) in the Kramers-Moyal expansion (6) do not contribute to the 
linear noise approximation. In this sense the Fokker-Planck equation (7) is equivalent to 
Van Kampen’s equation (14). However, we have to keep in mind that only the linear noise 
approximation is strictly valid [ 161. In other words, all (nonlinear) features that arise from 
using the Fokker-Planck equation (7) beyond that approximation are spurious and cannot 
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be taken seriously [ 15, 171. Furthermore, it means that the mathematical validity of Radons' 
Fokker-Planck approach is restricted to relatively short time-scales and regions of weight 
space with positive definite Hessian matrix, in short, restricted to local properties. Yet i t  
is frequently used to study global properties. In section 3 we will disscuss its accuracy in 
these situations. 

2.4. Van Kampen's expansion of the random-walk equation 

Van Kampen's expansion of the discrete-time random-walk equation is slightly more 
complicated. In the appendix we derive the linear noise approximation 

The only difference with (13) and (14) for the linear noise approximation of the continuous- 
time master equation is the term &(@(?)) instead of az($(l)). Furthermore, as expected, 
the result (15) can also be obtained by substitution of the small-fluctuations ansatz (12) into 
Hansen's Fokker-Planck equation (10). The conclusion is therefore that Radons' Fokker- 
Planck approximation of the continuous-time master equation is as accurate as Hansen's 
Fokker-Planck approximation of the discrete random-walk equation. Both can be used on 
time scales < O(I/t]) and in the so-called attraction regions. However, we should keep in 
mind that even in these situations only their linear noise approximations are strictly valid. 

On time scales > O(l/t]), the particular choice of time intervals does not matter any 
more and the solutions P ( w ,  t )  of the master and random-walk equation become essentially 
equal [14,9]. The stationary solutions are the same. This is not the case for the two 
Fokker-Planck approximations! As argued in section 2.2, the stationary solution of Hansen's 
Fokker-Planck equation (IO) becomes exact in the limit of small learning parameters t] for 
all Langevin-type learning processes with additive Gaussian white noise. Radons 191 gives 
an example of a linear learning rule with a non-Gaussian noise distribution for which the 
Fokker-Planck equation (7) yields the correct stationary distribution in the limit of small 
learning parameters. Is there a paradox? No! Inside the attraction regions, the local 
relaxation time is also of order 1 f t ]  141, So when the two solutions P ( w ,  ?) approach each 
other, the deterministic part @ ( I )  approaches a fixed-point solution @* with ai  (@*) = 0 and 
thus &(v) approaches a#), which makes the two approximations indeed equivalent. 
Outside of the attraction regions both approximations Q ( w ,  t )  become invalid at times of 
order l / q ,  i.e. before the 'true' probabilities P ( w , r )  start to become equivalent. 

3. Fokker-Planck approaches and global properties 

3.1. Description of simulations 

In the previous sections we have shown that the mathematical validity of Fokker-Planck 
approaches suggested in the literature is restricted to local properties of on-line learning 
processes. If presented as models instead of as proper expansions for small learning 
parameters t]. these models might still be useful in studying global properties (see e.g. [2, 
5-81 for attempts in this direction). In this section we will investigate how accurate these 
models can be. Fokker-Planck approaches are solely based on the first two moments of the 
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transition matrix (3): the drift a] (w) and the diffusion az(w). Therefore, they yield the same 
predictions for the ‘original’ on-line learning process ( I )  and the Langevin-type equation 

(16) 
which is 6) with n = I .  In our simulations we have Poisson-distributed time intervals for 
both learning procedures. 

We will focus mainly on first passage times from a fixed-point solution @* of the 
deterministic equation (13) into some region Z outside the attraction region. Mean 
first passage time typically scale exponentially with the reciprocal value of the learning 
parameter [18, 51, i.e. are (for small learning parameters q) much larger than the time scale 
on which the Fokker-Planck approximations can be proven to be valid. Mean first passage 
times for different values of the learning parameter q are calculated from Monte Carlo 
simulations with an ensemble of M independently operating networks. We start with all 
networks at w(0) = $P and take network i out of the simulation when it reaches region Z 
for the first time. This first passage time is denoted rl. The maximum likelihood value of 
the mean first passage time rmfP is 

A w  = V ~ I ( W )  + v -6  

with standard error [ 191 

In the following sections we will show plots of the logarithm of the mean first passage time 
rdp as a function of the reciprocal value of the learning parameter 8. Lines in these plots 
are least-squares fits of the form 

with c called the reference learning parameter. If the learning parameter 0 is chosen much 
smaller than this reference learning parameter, the first passage times get exponentially 
large. We will encounter mean first passage times of the order of lo6 learning steps. 

3.2. One-dimensional toy problem 

The learning rule is the one-dimensional Grossberg learning rule [20] 

A W  = 8 ( X  - W) 

which tends to the average ( x ) ,  over all inputs if x is drawn independently from the network 
state W. However, by choosing the probability to draw a particular input x as a function 
of the current network state w ,  i.e. p(x1w) instead of p ( x ) ,  various attractive points can be 
introduced [SI. We choose an underlying probability distribution 

+ S ( x  - 1) + - - S ( x +  I )  
2 PO@) = - 2 

i.e. there are only two possible inputs; for y =. 0 the probability to draw x = 1 is higher 
than the probability to draw x = -1. Now we apply a Gaussian window such that the 
probability to receive a particular input is enlarged if the weight is closer to this input: 
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Figure 1. Enor potential E of the onedimensional toy problem as a function of the weight w .  

with Z ( w )  a normalization consrant to normalize p ( r ) w ) .  Straightforward calculations yield 
the ‘jump moments’ 

U ]  (U) E ( X  - w), = dx ~ ( x I w )  f ( ~ ,  X )  = tanh[pm +E] - w s 
1 

cosh*[pw + E ]  
Q ( W )  E ( ( x  - u)’)~ = 1 + w2 - 2~ tanh[BW + E ]  = + a m  

with E 
potential E ( w )  defined by 

tanh-’ y .  In our simulations we work with p = 1.5 and E = 0.05. The error 

is plotted in figure 1. 
We collect the first passage times through the local maximum @- of N = 3000 

networks starting from the local minimum @id (figure 2(a)) and from the global minimum 
+&bal (figure 2(b)). Mean first passage times predicted by Radons’ Fokker-Planck 
equation (7) are obtained by numerical integration of [I] 

with the stationary solution (8), and similarly for Hansen’s suggestion (10). The figures 
indicate that (18) yields a quite accurate prediction for the Langevin-type equation (16). 
Since u:(w) << QZ(W)  for all @id 4 w < @&,al, the difference between the two Fokker- 
Planck approaches is small. However, the mean first passage times for the Langevin-type 
equation are different from those of the ‘true’ on-line learning process. And, most important 
of all, the graphs seem to diverge, rather than to converge for small learning parameters 9 .  

In 151 we suggested that one might be able to estimate the slope of these graphs, i.e. 
the reference learning parameters c. The model we presented is based on the following two 
assumptions: 

(i)  The shape of the probability distribution inside amaction regions is given by Gaussians 
that follow from a (local) application of Van Kampen’s expansion. The simplification 
here is that we assume the Gaussian shape in the whole attraction region, not just in a 
neighbourhood of order q of the fixed-point solution. 
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Figure 2. Logarithm of the mean first passage time versus reciprocal value of the leaming 
parameter. Circles represent simulations. lines fits of the form (17). Error b m  are an the order 
of the paint sizes (see inset). From top to bottom: Langevin-type leaming. Hansen’s Fokker- 
Planck equation, Rndons’ Fokker-Planck equation, and on-line learning. (0)  S t d g  from the 
local minimum. Graphs for the MO FoUer-Planck equations are almost on top of each other 
(see inset). (b)  Starting from the global minimum. 

(ii) The reference learning parameter is hardly affected by what happens outside the 
attraction regions. Thus it can be calculated by considering the first passage times 
from the fixed-point solution @* to the boundary of the attraction region &d. 

If these assumptions are valid, then the reference learning parameter c obeys [5] 

(19) 

This description is also a Fokker-Planck approach in the sense that it only uses informa- 
tion about the drift and the diffusion. The local Gaussian probabilities only depend on the 
derivative of the drift and the diffusion at the fixed-point solution. Therefore, this approach 
does not take into account the full dependence of the drift and diffusion on the weights, in 
contrast with the Fokker-Planck approaches of Radons and Hansen. In the limit of high 
barriers, the reference learning parameter for the Fokker-Planck first mean passage time (18) 
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Table 1. Reference learning panmeten c for the mean firs1 passage times starting from the 
local and the global minimum. Terms in parentheses denote theoretical predictions. 

Local Global 

On-line 0.138 0.326 
Langevin 0.156 0.353 
Radons 0.177 (0.161) 0.351 (0.34) 
Hansen 0,180 (0.163) 0.363 (0.365) 
Heskes (0.233) (0.6391 

4 

3.5 

1nQ 3 

2.5 

1.5 2/ 5 

Figure 3. Logarithm of stationary occupation at global minimum divided by ahtionary occupa- 
tion at local minimum versus reciprocal value of the learning parameter. Circles represent sim- 
ulations, and lines fits of the form (17). From top to bottom: Langevin-type learning, Hansen’s 
Fokker-Planck equation, Radons’ Fokker-Planck equation. and on-line learning. Graphs for 
Langevin-type learning and Hansen’s Fokker-Planck equation are on top of each other. 

to the Arrhenius factor 

Table 1 shows that the Arrhenius factors (terms in parentheses) resulting from Radons’ 
and Hansen’s Fokker-Planck approaches are far better estimates of the reference learning 
parameters for on-line learning than the prediction (19). In this case, the full Fokker-Planck 
equations are therefore better models to predict reference learning parameters than the model 
presented in [SI. 

Let us define the stationary occupation numbers 

w0wl = lz dw P d u )  and ngtabA = 1 - nlacnl . 
They obey the ‘detailed-balance’ condition 

Q--=-. nglobvl T@al 

niocat rtocnl 

For small learning parameters I). the stationary probability distribution is sharply peaked 
in the neighbourhood of the minima, and qoCa and rglobill are the mean first passage times 
through the local maximum starting from the local and the global minimum, respectively. 
Figure 3 is figure 2(a) substracted from figure 2@), i.e. it shows In Q as a function of 



Fokker-Planck approximations of on-line leaming 5155 

q - ’ .  The graphs for Langevin-type learning and Hansen’s Fokker-Planck equation are on 
top of each other. This is in perfect agreement with section 2.2 where we derived that 
the stationary solutions of the Fokker-Planck equation (7) and the Langevin-type learning 
rule (16) are equivalent for small learning parameters q. 

3.3. Kohonen leaming rule 

The Kohonen learning rule 1101 tries to capture important features of self-organizing 
processes. Properties of the Kohonen learning procedure have been studied in great detail. 
In this context, Ritter and Schulten U121 were the first to use a master equation for the 
description of on-line learning processes. 

Here we will study a network with three units, each having one weight. The network 
state vector is written as w = (w1, wz, ~ 3 ) ~ .  Inputs x are drawn with equal probability 
from the interval [O, 11: 

p ( x )  = s ( x )  e(i - x ) .  

First the ‘winner’ K(X) is determined. It is the unit with weight wu(x) closest to the input x :  

The weights are then updated by 

Awi = q hi,w(r) (x  - q) with h . .  t J - ‘ J  - 6.. + 0 6 .  L,*l. . 

So, not only the winner is updated (with strength l), but also its nearest neighbour@.) (with 
strength U). By writing the determination of the winning unit as a product of @-functions, 
it is easy to see that the Kohonen learning rule is of the form (1). 

A weight vector is called ‘ordered’ if wl < wz < w3 or w, 2 w~ > wl, and disordered 
otherwise. For U = 0.1, the value that we use in our simulations, there are both ordered 
and disordered fixed-point solutions #* of the deterministic equation (13). We start with all 
500 networks at the disordered fixed-point solution #* for which wz < w1 < w3, and take 
a network out of the simulation if it reaches the region Z with wl < wz < w3. We per- 
form these simulations for both the original on-line learning rule (1) and the Langevin-type 
learning rule (16) with the same drift vector and diffusion matrix. The results are shown 
in figure 4. Here it is even more clear that the on-line learning rule and the Langevin-type 
learning rule give different results for small learning parameters q. We obtain a reference 
learning parameter c = 1.56 for on-line learning and c = 1.09 for Langevin-type learning. 
Note that, in contrast with the one-dimensional toy problem of section 3.2, in this example 

?“ 

Figure 4. Logarithm of mean first pas- 
sage times from a disordered fixed-point 
solution into an ordered region versus 
wiprocal value of the learning p m -  
eter. Circles represent simulations, lines 
fits of the i o n  (17). Emr bas are on 
the order of h e  point sizes. On-line 
leaning (upper curve) md Langevin- 
type learning (lower curve). 
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the reference learning parameter for on-line learning is the largest one. It does not make 
sense to look at the mean first passage times for Langevin-type learning as an upper or 
lower bound for on-line learning: they are just completely different. 

3.4. Backpropagation 

Backpropagation [I 11 is a popular supervised learning rule for multi-layered perceptrons. 
In several papers [2,6-8,21,22] properties of on-line backpropagation have been studied 
using Fokker-Planck approaches. 

Simulations are performed on the network shown in figure 5(a). Nine adaptive elements 
are combined in the weight vector w = (WIO,  W I I ,  wiz. wzo, W Z I .  w22, w30, w31, ~ 3 2 ) ‘ .  The 
network has two variable inputs: x1 and x2. Thresholds are incorporated by defining 
xo E yo = -1. Outputs of the hidden units and the output unit are given by 

respectively. Training patterns are three-dimensional vectors x” = ( x r ,  x ; ,  x,”)’. The 
components x: and x; give the input values of the network for pattern p 3  the component 
x: the desired output value. At each learning step one of the patterns, say p, is drawn at 
random from the training set. The on-line learning rule for this pattern x’ then follows the 
gradient of the error 

2 
2 2  

i-0 j=o 
E(w, x’) = ; [y3(w, x; ,  x;, - xp]’ + :A [U; - U ]  

with 01 = 0.1 and A = 0.01. Incorporation of the second term, the so-called bias, has a few 
advantages among which there are prevention of local minima with infinite weights and 
reduction of training times [23,24]. 

Following [25], we choose the set of five training patterns sketched in figure 5(b). Full 
circles indicate negative desired output x,” = -0.8, crosses positive output x,” = 0.8. It 
is the usual XOR truth table with an additional pattern at the origin. Now the total error 
potential (E(w. x ” )  averaged over all five patterns) has not only global minima, but also 
deep local minima. The (thick) full lines in figure 5(6) show the separation lines of the 
hidden units that lead to the optimal solution (all five patterns correctly classified); the 
broken lines are those corresponding to the local minima (one pattern misclassified). For 
symmetry reasons, there are eight Iocal and eight global minima. 

/ I \  Y 

Figure 5. ( U )  Network stmcture. (b) XOR problem with one additional pattern. 



Fokker-Planck approximations of on-line learning 

10 ::E 6 1 2 3 4 5 

8 

7 

.% 

v-‘ 

5157 

Figure 6. Log8rithithm of mean first passage times from a local minimum into a region with 
all five patterns correc(ly classified versus reciprocal value of the learning panmeter. Circles 
represent simulations. lines fie of the form (17). Error bars are on the order of the point sires. 
O n h e  learning (upper cume) and Langevin-type learning (lower curve). 

All 500 networks start at a local minimum where the pattern x = (0.0, -0.8)T is 
misclassified. First passage times into a region Z where all five patterns are correctly 
classified are collected for both on-line learning and Langevin-type learning. The results are 
shown in figure 6. Again it is evident that Langevin-type learning yields very different mean 
first passage times than on-line learning, especially for small learning parameters q. Here 
we find reference learning parameters c = 1.45 for Langevin-type learning and c = 2.22 
for on-line learning. 

4. Two conclusions 

The Fokker-Planck approaches suggested by Radons and Hansen are equally valid: Radons’ 
Fokker-Planck equation is a locally valid approximation of the continuous-time master 
equation, Hansen’s Fokker-Planck equation is a focally valid approximation of  the discrete- 
time random-walk equation. Drift and diffusion, the only two moments that are taken into 
account by a Fokker-Planck approach, are not sufficient for a precise calculation of global 
properties of on-line learning processes. 

Acknowledgments 

I would like to thank Andreas Herz and Christian Kurrer for many useful comments on an 
earlier version of this manuscript. This work was supported by a grant from the National 
Institutes of Health (plIRR05969) to Klaus Schulten and (in the final stage) by the Dutch 
Foundation for Neural Networks (SNN). 

Appendix 

First, we will give a quick review of Van Kampen’s expansion of the continuous-time master 
equation (5). 
(i) We start with the ‘small-fluctuations ansatz’ (12) and define the function rI(C, t )  as the 

probability P ( w ,  t )  in terms of the new variable e: 
we,  t )  = P ( M )  + f i t ,  t )  . 
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(ii) The time derivative of the n(', t )  consists of two parts: 

a n ( 6 , t )  a w w ,  t )  d m  + a p ( w ,  t )  I d w )  a n ( t ,  t )  + a m ,  t )  -= = _- - 
a t  a w  dt a r  ,m dt ae at  ' 

(iii) We rewrite the Kramers-Moyal expansion (6) in terms of n g ,  t )  and obtain 

(iv) We choose the function $(t)  such that the lowest-order terms in 0 on the right-hand 
side cancel and obtain the deterministic equation 

(v) We make a Taylor expansion of a,(@(t) + f i t )  in powers of fi. After some 
rearrangements we obtain 

where a,?($) stands for the ith derivative of U,($) with respect to the argument $, 
(vi) In the limit 0 -+ 0 only the term m = 2 remains on the right-hand side. This is called 

the linear noise approximation. The remaining differential equation for n((, t )  is the 
Fokker-Planck equation 

(vii) From (AI) we can calculate the dynamics of the average of the fluctuations ( f ) ,  and 
of the square of the fluctuations (t'),: 

(viii) We started with the ansatz that ( is of order 1 .  From equation (A2) we conclude that 
the final result is consistent with the ansatz, if both evolution equations converge. i.e. if 

u,"'($(t)) < 0. 

Next we will make a similar expansion of the discrete-time random-walk equation (4). 
The subsequent steps in this derivation can be compared with the corresponding steps above. 

(i) Again we start with the 'small-fluctuations ansatz' (12) and define the function ll(t, t )  

(ii) This step is more complicated for a difference equation than for a differential equation. 
as the probabifity P ( w ,  t )  in terms of the new variable 5. 

We have to make a Taylor expansion: 
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(iii) We replace the term P ( w ,  t+r ) -  P ( w .  t )  by the (same) Kramers-Moyal expansion (6)  

(iv) The deterministic equation is the nonlinear difference equation 
in terms of n(l, f). 

1 
- [@( t+5) -@(f ) l=a l (@(r ) ) .  (A31 tl 

(v) After making the Taylor expansion and some more rearrangements we obtain 

(vi) In the limit q --f 0 only the term 1 = 2 remains in the first sum and the term 1 = 0 and 
m = 2 in the second sum. So, finally we arrive at the Fokker-Planck equation 
1 a 
- [ n ( c , t + r ) - n ( t , t ) l  = -a ," ' (@(t ) ) - [en( t , t ) l  

az 
9 ae 

a t  +;[az(@(t)) - a?(@(r))l ,nib, t ) .  (-44) 

(vii) The evolution equations are now 
1 
- - [(e),,, - (C),] = a;%")) (0, 

(viii) The validity of the expansion is again restricted to local properties. 

By considering the limit of small learning parameters 7. we can now transform the 
difference equations (A3)  and (A4) into differential equations. To see this, let us compare 
the difference equation (A3)  and the differential equation 

From this differential equation we obtain the difference 

with the functions b,(@) obeying the recurrence equation 

Since all b,(@) are independent of 7, expression (A7j is a proper expansion in the learning 
parameter 7. and can be written as 

1 "  

11 

bn+l(@) =al (C)b! l ) (@) and h(@) =el(@). 

-W + r )  -&)I = al(d(t)) + 
So, up to the order that is taken into account by the linear noise expansion anyway, the 
solution $( t )  of the differential equation (A6) is equivalent to the solution @(t)  of the 
difference equation (A3). provided, of course, that we start with &O) = $(O). The same 
procedure also applies to (A4)  for the probability ll(.$, t )  and to (A5) for the moments ( e )  
and (6'). This finally leads to the set of equations (15). 
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